Role of the durum wheat dehydrin in the function of proteases conferring salinity tolerance in Arabidopsis thaliana transgenic lines.
نویسندگان
چکیده
Dehydrins are claimed to stabilize macromolecules against freezing damage, dehydration, ionic or osmotic stresses, thermal stress and re-folding yield. However, their precise function remains unknown. In this context, we report the behavior of protease activities in dehydrin transgenic Arabidopsis lines against the wild type plant under salt stress (100mM NaCl). Indeed, proteases play key roles in plants, maintaining strict protein quality control and degrading specific sets of proteins in response to diverse environmental and developmental stimuli. We proved that durum wheat DHN-5 modulates the activity of some proteases, summarized on the promotion of the Cysteinyl protease and the decrease of the Aspartyl protease activity. This fact is also upgraded in salt stress conditions. We conclude that the dehydrin transgenic context encodes salinity tolerance in transgenic lines through the modulation of the interaction not only at transcriptional level but also at protein level and also with the impact of salt stress as an endogenous and exogenous effector on some biocatalysts like proteases.
منابع مشابه
Wheat and barley dehydrins under cold, drought, and salinity – what can LEA-II proteins tell us about plant stress response?
Dehydrins as a group of late embryogenesis abundant II proteins represent important dehydration-inducible proteins whose accumulation is induced by developmental processes (embryo maturation) as well as by several abiotic stress factors (low temperatures, drought, salinity). In the review, an overview of studies aimed at investigation of dehydrin accumulation patterns at transcript and protein ...
متن کاملImproved salt tolerance in canola (Brasica napus) plants by overexpression of Arabidopsis Na+/H+ antiporter gene AtNHX1
A significant portion of the world’s cultivated land is affected by salinity that reduces crop productivity in these areas. Breeding for salt tolerance is one of the important strategies to overcome this problem. Recently, genetic engineering is becoming a promising approach to improving salt tolerance. In order to improve the yield performance of canola in saline soils, we transformed canola w...
متن کاملA wheat allene oxide cyclase gene enhances salinity tolerance via jasmonate signaling.
One of the two branches of the α-linolenic acid metabolism pathway is catalyzed by 12-oxo-phytodienoic acid reductase I, and the other is involved in jasmonic acid (JA) synthesis. The former is known to be active in the response to salinity tolerance in wheat (Triticum aestivum), but the participation of the latter in this response has not been established as yet. Here, the salinity-responsive ...
متن کاملTaNAC2, a NAC-type wheat transcription factor conferring enhanced multiple abiotic stress tolerances in Arabidopsis
Environmental stresses such as drought, salinity, and cold are major factors that significantly limit agricultural productivity. NAC transcription factors play essential roles in response to various abiotic stresses. However, the paucity of wheat NAC members functionally characterized to date does not match the importance of this plant as a world staple crop. Here, the function of TaNAC2 was ch...
متن کاملارزیابی لاینهای گندم دوروم با استفاده از شاخصهای مبتنی بر عملکرد دانه در شرایط خشکی و بررسی ارتباط بین شاخصها با یکدیگر
In order to study tolerance of durum wheat (Triticum durum) lines to drought stress and also evaluating stress tolerance indices, an experiment based on randomized complete block design with four replications was conducted under two rain fed and supplementary irrigation conditions at Gachsaran station during 2011-2012 cropping season using 20 durum wheat lines. Results of combined analysis of v...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- International journal of biological macromolecules
دوره 85 شماره
صفحات -
تاریخ انتشار 2016